Huddling behavior as critical phase transition triggered by low temperatures
نویسندگان
چکیده
Huddling is a grouping behavior where animals maintain close bodily contact and save energy. We tested the hypothesis that this thermoregulatory behavior behaves as a system with continuous (second-order phase) transition called critical when the environmental temperature (driving parameter) is near a critical value. To do so, we followed theoretical and experimental approaches, examining data from geometrical models, metabolic rate during huddling in small mammals, and also conducting an experiment on thermoregulatory huddling behavior with white mice. Our results support all predictions for systems under continuous-phase transition triggered by low temperatures, a phenomenon reported for first time in a biological system. We suggest that huddling behavior in social animals, a recognized adaptive behavior, may be considered a self-organized system coupled with an external driving parameter. 2011 Wiley Periodicals, Inc. Complexity 00: 000–000, 2011
منابع مشابه
Self-organised criticality in the evolution of a thermodynamic model of rodent thermoregulatory huddling
A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between ...
متن کاملبررسی رفتار برش وشکسانی در سیال تعلیقی کلوییدی سیلیکا
We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol) under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, ...
متن کاملA Self-Organising Model of Thermoregulatory Huddling
Endotherms such as rats and mice huddle together to keep warm. The huddle is considered to be an example of a self-organising system, because complex properties of the collective group behaviour are thought to emerge spontaneously through simple interactions between individuals. Groups of rodent pups display two such emergent properties. First, huddling undergoes a 'phase transition', such that...
متن کاملThe effect of nano transition metals on microstructure and phase evolution of low carbon MgO-C refractories
In the present study, the effect of Iron Nitrate as catalytic precursor to in situ formation of nano-Fe particles in phenolic resin and microstructural evolution of MgO-C refractories has been investigated. Therefore, various samples according to matrix section formulation of low carbon MgO-C refractories (LCMCR’s) with 0 and 6 wt% (Fe/Phenolic resin) were prepared and phase and microstructure ...
متن کاملThe energetics of huddling in two species of mole-rat (Rodentia: Bathyergidae).
Small rodents with a large surface-area-to-volume ratio and a high thermal conductance are likely to experience conditions where they have to expend large amounts of energy in order to maintain a constant body temperature at low ambient temperatures. The survival of small rodents is thus dependent on their ability to reduce heat loss and increase heat production at low ambient temperatures. Two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Complexity
دوره 17 شماره
صفحات -
تاریخ انتشار 2011